欢迎来到变频电源|交流大功率变频电源|60HZ三相变频电源品牌厂家|leyu乐鱼网官方网站!
全国服务热线:+86-755-28612366      售后服务:13924598495

乐鱼官网app平台下载

直流稳压电源技术—串联稳压电源

时间: 2024-07-10 14:53:02 |   作者: 乐鱼官网app平台下载

  ,T1是调整管,D1是基准电压源,R1是限流电阻,R2是负载。由于T1基极电压被D1固定在UD1,T1发射结电压(UT1)BE在T1正常工作时基本是一个固定值(一般硅管为0.7V,锗管为0.3V),所以输出电压UO=UD1-(UT1)BE。当输出电压远大于T1发射结电压时,可忽略(UT1)BE,则UO≈UD1。

  假设由于某一些原因引起输出电压UO降低,即T1的发射极电压(UT1)E降低,由于UD1保持不变,从而造成T1发射结电压(UT1)BE上升,引起T1基极电流(IT1)B上升,从而造成T1发射极电流(IT1)E被放大β倍上升,由晶体管的负载特性可知,这时T1导通更加充分管压降(UT1)CE将迅速减小,输入电压UI更多的加到负载上,UO得到快速回升。这个调整过程可以使用下面的变化关系图表示:

  当输出电压上升时,整个分析过程与上面过程的变化相反,这里我们就不再重复,只是简单的用下面的变化关系图表示:

  这里我们只分析了输出电压UO降低的稳压工作原理,其实输入电压UI降低等其他情况下的稳压工作原理都与此类似,最终都是反应在输出电压UO降低上,因此工作原理大致相同。

  从电路的工作原理可以看出,稳压的关键有两点:一是稳压管D1的稳压值UD1要保持稳定;二是调整管T1要工作在放大区且工作特性要好。

  其实还可以用反馈的原理来说明简易串联稳压电源的工作原理。由于电路是一个射极输出器,属于电压串联负反馈电路,电路的输出电压为UO=(UT1)E≈(UT1)B,由于(UT1)B保持稳定,所以输出电压UO也保持稳定。

  简易串联稳压电源由于使用固定的基准电压源D1,所以当需要改变输出电压时只有更换稳压管D1,这样调整输出电压非常不方便。另外由于直接通过输出电压UO的变化来调节T1的管压降(UT1)CE,这样控制作用较小,稳压效果还不够理想。因此这种稳压电源仅仅适合一些比较简单的应用场合。

  图4-1-1是简易串联稳压电源的一个实际应用电路,这个电路用在无锡市无线电五厂生产的“咏梅”牌771型8管台式收音机上。其中T8、DZ、R18构成简易稳压电路,B6、D4~D7、C21组成整流滤波电路。由于T8发射结有0.7V压降,为保证输出电压达到6V,应选用稳压值为6.7V左右的稳压管。

  由于简易串联稳压电源输出电压受稳压管稳压值得限制无法调节,当需要改变输出电压时必须更换稳压管,造成电路的灵活性较差;同时由输出电压直接控制调整管的工作,造成电路的稳压效果也不够理想。所以必须对简易稳压电源进行改进,增加一级放大电路,专门负责将输出电压的变化量放大后控制调整管的工作。由于整个控制过程是一个负反馈过程,所以这样的稳压电源叫串联负反馈稳压电源。

  图4-2-1是串联负反馈稳压电路电路图,其中T1是调整管,D1和R2组成基准电压,T2为比较放大器,R3~R5组成取样电路,R6是负载。其电路组成框图见图4-2-2。

  假设由于某种原因引发输出电压UO降低时,通过R3~R5的取样电路,引起T2基极电压(UT2)O成比例下降,由于T2发射极电压(UT2)E受稳压管D1的稳压值控制保持不变,所以T2发射结电压(UT2)BE将减小,于是T2基极电流(IT2)B减小,T2发射极电流(IT2)E跟随减小,T2管压降(UT2)CE增加,导致其发射极电压(UT2)C上升,即调整管T1基极电压(UT1)B将上升,T1管压降(UT1)CE减小,使输入电压UI更多的加到负载上,这样输出电压UO就上升。这个调整过程能够正常的使用下面的变化关系图表示:

  当输出电压升高时整个变化过程与上面完全相反,这里就不再赘述,简单的用下图表示:

  与简易串联稳压电源相似,当输入电压UI或者负载等其他情况发生时,都会引起输出电压UO的相应变化,最终都可以用上面分析的过程说明其工作原理。

  在串联负反馈稳压电源的整个稳压控制过程中,由于增加了比较放大电路T2,输出电压UO的变化经过T2放大后再去控制调整管T1的基极,使电路的稳压性能得到增强。T2的β值越大,输出的电压稳定性越好。

  前面我们还说到R3~R5是取样电路,由于取样电路并联在稳压电路的输出端,而取样电压实际上是通过这三个电阻分压后得到。在选取R3~R5的阻值时,可以通过选择适当的电阻值来使流过分压电阻的电流远大于流过T2基极的电流。也就是说可以忽略T2基极电流的分流作用,这样就可以用电阻分压的计算方法来确定T2基极电压(UT2)B。

  通过上面的计算我们能够准确的看出,只要合适选择R3~R5的阻值就可以控制输出电压UO的范围,改变R3和R5的阻值就可以改变输出电压UO的边界值。

  当输出电流不能达到要求时,能够最终靠采用复合调整管的方法来增加输出电流。一般复合调整管有四种连接方式,如图4-2-7所示。

  图4-2-7中的复合管都是由一个小功率三极管T2和一个大功率三极管T1连接而成。复合管就可以看作是一个放大倍数为βT1βT2,极性和T2一致,功率为(PT1)PCM的大功率管,而其驱动电流只要求(IT2)B。

  图4-2-8是一个实用串联负反馈稳压电源电路图。此电路采取图4-2-7(a)中的复合管连接方法来增加输出电流的大小。另外还增加了一个电容C2,它的最大的作用是防止产生自激振荡,若发生自激振荡可由C2将其旁路掉。

  这一节我们综合运用前面各章节的知识,根据给定条件实际设计一个直流稳压电源,通过这一个设计实例更好的掌握串联负反馈稳压电源的设计。由于是业余条件下的设计,有些参数指标并没过多考虑,有部分参数以经验值进行估算。这样做才能够避免涉及过深、过多的理论知识,对于业余条件下的应用可完全满足。

  由于桥式整流、电容滤波电路十分成熟,这里我们最终选择桥式整流、电容滤波电路作为电源的整流、滤波部分。由于要求电源输出电压有一定的调整范围,稳压电源部分选择串联负反馈稳压电路。同时由于对输出电流要求比较大,调整管一定要采用复合管。综合这一些因素可以初步确定电路的形式,参见图4-2-9。

  这一部分主要计算变压器B1次级输出电压(UB1)O与变压器的功率PB1。

  一般整流滤波电路有2V以上的电压波动(设为ΔUD)。调整管T1的管压降(UT1)CE应维持在3V以上,才可能正真的保证调整管T1工作在放大区。整流输出电压最大值为15V。根据第二章《常用整流滤波电路计算表》可知,桥式整流输出电压是变压器次级电压的1.2倍。

  当电网电压下降-10%时,变压器次级输出的电压应能保证后续电路正常工作,那么变压器B1次级输出电压(UB1)OMIN应该是:

  当电网电压上升+10%时,变压器B1的输出功率最大。这时稳压电源输出的最大电流(IO)MAX为500mA。此时变压器次级电压(UB1)OMAX为:

  为保证变压器留有一定的功率余量,确定变压器B1的额定输出电压为18.5V,额定功率为12VA。实际购买零件时如果没有输出电压为18.5V的变压器能选用输出电压为18V或以上的变压器。当选用较高输出电压的变压器时,后面各部分电路的参数要重新计算,以免由于电压过高造成元件损坏。

  这一部分主要计算整流管的最大电流(ID1)MAX和耐压(VD1)RM。由于四个整流管D1~D4参数相同,所以只需要计算D1的参数。

  整流管D1的耐压(VD1)RM即当市电上升10%时D1两端的最大反向峰值电压为:

  得到这些参数后可以查阅有关整流二极管参数表,这里我们最终选择额定电流1A,反向峰值电压50V的IN4001作为整流二极管。


上一篇:不间断电源电路图 不间断电源的工作原理和类型
下一篇:【48812】线性稳压电源电子路规划图解析 —电路图天天读(191)